top of page

60-Day Machine Learning Roadmap: A Comprehensive Guide for Mastery


machine learning in 60 days
machine learning in 60 days

Introduction

Machine learning (ML) is one of the most in-demand fields in technology, offering solutions in various domains such as healthcare, finance, and automation. This structured 60-day roadmap will take you from foundational concepts to real-world implementation. Given that you already have a strong grasp of Python, we will focus on machine learning techniques, mathematical foundations, and essential libraries.

Each section contains daily learning objectives, key concepts, and recommended libraries. By following this roadmap, you will gain a deep understanding of ML theory and be able to implement models effectively.

Phase 1: Foundations of Machine Learning (Day 1 - Day 15)

Week 1: Introduction to Machine Learning and Essential Math

  • Day 1: Introduction to Machine Learning

    • Supervised vs. Unsupervised vs. Reinforcement Learning

    • Overview of ML applications

    • Popular ML libraries (NumPy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, PyTorch)

  • Day 2: Data Handling and Preprocessing

    • NumPy and Pandas for data manipulation

    • Handling missing data, outliers, and duplicates

    • Feature scaling (Standardization, Normalization, Min-Max Scaling)

  • Day 3: Exploratory Data Analysis (EDA)

    • Data visualization (Matplotlib, Seaborn)

    • Correlation analysis and feature selection

    • Understanding distributions (Gaussian, Uniform, Skewed)

  • Day 4: Introduction to Probability and Statistics

    • Probability distributions (Normal, Bernoulli, Binomial, Poisson)

    • Central tendency (Mean, Median, Mode) and variance

    • Conditional probability and Bayes' Theorem

  • Day 5: Linear Algebra for Machine Learning

    • Vectors, Matrices, and Tensors

    • Matrix operations (Addition, Multiplication, Transpose, Inverse)

    • Eigenvalues, Eigenvectors, and Principal Component Analysis (PCA)

  • Day 6: Calculus for Machine Learning

    • Differentiation and Partial Derivatives

    • Gradient Descent and Optimization

    • Chain Rule and Backpropagation

  • Day 7: Hands-on Data Preprocessing

    • Implementing data cleaning techniques in Python

    • Using Scikit-Learn for preprocessing (One-Hot Encoding, Label Encoding)

    • Practice problems on Kaggle datasets

Week 2: Supervised Learning Basics

  • Day 8: Introduction to Supervised Learning

    • Understanding labeled data

    • Overview of regression and classification

    • Train-test split and cross-validation

  • Day 9: Linear Regression

    • Understanding Linear Regression equation

    • Cost function and Mean Squared Error (MSE)

    • Implementing Linear Regression with Scikit-Learn

  • Day 10: Multiple Linear Regression & Feature Engineering

    • Handling multiple independent variables

    • Polynomial Regression

    • Feature engineering techniques (Feature Selection, Feature Extraction)

  • Day 11: Logistic Regression

    • Difference between Linear and Logistic Regression

    • Sigmoid function and decision boundaries

    • Evaluating classification models (Precision, Recall, F1-score, ROC Curve)

  • Day 12: Decision Trees and Random Forest

    • Entropy, Gini Impurity, Information Gain

    • Overfitting and Pruning

    • Implementing Decision Trees and Random Forest in Python

  • Day 13: Support Vector Machines (SVM)

    • Understanding hyperplanes and margins

    • Kernel Trick and different kernel types

    • Implementing SVM with Scikit-Learn

  • Day 14: K-Nearest Neighbors (KNN)

    • Understanding distance metrics (Euclidean, Manhattan)

    • Choosing the right value of K

    • Implementing KNN from scratch

  • Day 15: End-to-End Supervised Learning Project

    • Choosing a dataset

    • Building a pipeline (Data preprocessing, Model training, Evaluation)

    • Fine-tuning hyperparameters

Phase 2: Advanced Machine Learning Concepts (Day 16 - Day 45)

Week 3: Unsupervised Learning

  • Day 16: Introduction to Clustering

    • Understanding clustering algorithms

    • Applications of clustering

  • Day 17: K-Means Clustering

    • Centroid-based clustering

    • Choosing the right number of clusters using the Elbow method

    • Implementing K-Means with Scikit-Learn

  • Day 18: Hierarchical Clustering

    • Agglomerative vs. Divisive Clustering

    • Dendrograms

    • Implementing Hierarchical Clustering in Python

  • Day 19: Principal Component Analysis (PCA)

    • Dimensionality reduction techniques

    • Eigenvalues and Eigenvectors in PCA

    • Implementing PCA using Scikit-Learn

  • Day 20: Association Rule Learning

    • Apriori Algorithm

    • Market Basket Analysis

Week 4: Neural Networks and Deep Learning

  • Day 21: Introduction to Neural Networks

    • Biological Neurons vs. Artificial Neurons

    • Perceptron Model

    • Activation Functions

  • Day 22: Backpropagation and Optimization

    • Understanding Loss Functions

    • Gradient Descent Variants (SGD, Adam, RMSProp)

  • Day 23: Implementing Neural Networks from Scratch

    • Using NumPy for Neural Networks

    • Training and Testing Phases

  • Day 24: Deep Learning with TensorFlow and Keras

    • Building a basic neural network

    • Model Compilation, Training, and Evaluation

  • Day 25 - 28: Convolutional Neural Networks (CNNs)

    • Understanding Filters, Strides, Padding

    • Implementing CNN for Image Classification

Week 5: Natural Language Processing (NLP)

  • Day 29: Introduction to NLP

    • Tokenization, Lemmatization, Stemming

    • Stopword Removal

  • Day 30: Bag of Words and TF-IDF

    • Vectorizing text data

    • Implementing BoW and TF-IDF

  • Day 31 - 33: Recurrent Neural Networks (RNNs) and LSTMs

    • Understanding Sequence Models

    • Implementing Text Classification

Phase 3: Deployment & Real-World Projects (Day 46 - Day 60)

Week 6: Model Deployment and Real-World Applications

  • Day 46 - 48: Model Deployment with Flask & FastAPI

  • Day 49 - 52: Working with Real-World Datasets (Kaggle Challenges)

  • Day 53 - 55: Hyperparameter Tuning and Model Optimization

  • Day 56 - 58: End-to-End ML Project

  • Day 59 - 60: Final Assessment & Resume Building

📌 Phase 1: Foundations of Machine Learning (Day 1 - Day 15)

Week 1: Introduction to ML and Essential Math

🔹 Day 1: Introduction to Machine Learning

Concepts:

  • What is ML? Teaching machines to learn from data.

  • Types of ML:

    • Supervised Learning: Labeled data (e.g., spam classification).

    • Unsupervised Learning: No labels, finding patterns (e.g., clustering).

    • Reinforcement Learning: Learning via rewards (e.g., game AI).

  • Common ML Libraries: NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, PyTorch.

Code: Install Required Libraries

!pip install numpy pandas matplotlib seaborn scikit-learn tensorflow keras torch

🔹 Day 2: Data Handling and Preprocessing

Concepts:

  • Handling missing values: dropna(), fillna().

  • Feature scaling: MinMaxScaler, StandardScaler.

  • Categorical Encoding: One-Hot Encoding, Label Encoding.

Code: Data Preprocessing with Pandas & Scikit-Learn

import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler, StandardScaler, LabelEncoder

# Sample dataset
data = {
    'Age': [25, 30, np.nan, 35, 40],
    'Salary': [50000, 60000, 75000, 80000, np.nan],
    'City': ['New York', 'Paris', 'Berlin', 'London', 'Tokyo']
}

df = pd.DataFrame(data)

# Handling missing values
df['Age'].fillna(df['Age'].mean(), inplace=True)
df['Salary'].fillna(df['Salary'].median(), inplace=True)

# Feature scaling
scaler = MinMaxScaler()
df[['Age', 'Salary']] = scaler.fit_transform(df[['Age', 'Salary']])

# Encoding categorical data
encoder = LabelEncoder()
df['City'] = encoder.fit_transform(df['City'])

print(df)

🔹 Day 3: Exploratory Data Analysis (EDA)

Concepts:

  • Visualizing Data: Histograms, Scatter Plots, Pair Plots.

  • Outlier detection: Boxplots, Z-score.

  • Feature Correlation: Heatmaps.

Code: EDA using Matplotlib & Seaborn

import seaborn as sns
import matplotlib.pyplot as plt

# Load sample dataset
df = sns.load_dataset('iris')

# Pairplot for feature relationships
sns.pairplot(df, hue='species')
plt.show()

# Heatmap for correlation
plt.figure(figsize=(8,6))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.show()

🔹 Day 4: Probability and Statistics for ML

Concepts:

  • Probability distributions: Gaussian, Bernoulli, Binomial.

  • Bayes’ Theorem: Conditional probability for Naïve Bayes classifier.

  • Mean, Median, Variance, Standard Deviation.

Code: Normal Distribution in NumPy

import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

# Generate normal distribution data
data = np.random.normal(loc=0, scale=1, size=1000)

# Plot histogram
plt.hist(data, bins=30, density=True, alpha=0.6, color='b')

# Plot probability density function
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = stats.norm.pdf(x, 0, 1)
plt.plot(x, p, 'k', linewidth=2)

plt.title("Normal Distribution")
plt.show()

🔹 Day 5: Linear Algebra for ML

Concepts:

  • Vectors and Matrices: Basis of ML models.

  • Matrix operations: Addition, Multiplication, Inversion.

  • Eigenvalues and Eigenvectors: Used in PCA.

Code: Matrix Operations using NumPy

import numpy as np

# Create matrices
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])

# Matrix Addition
C = A + B

# Matrix Multiplication
D = np.dot(A, B)

# Inverse of a matrix
E = np.linalg.inv(A)

print("Matrix Addition:\n", C)
print("Matrix Multiplication:\n", D)
print("Inverse of A:\n", E)

🔹 Day 6: Calculus for ML

Concepts:

  • Derivatives and Partial Derivatives: Used in Gradient Descent.

  • Gradient Descent: Optimizing cost functions.

  • Chain Rule in Backpropagation.

Code: Gradient Descent Implementation

import numpy as np

# Define function and its derivative
def f(x):
    return x**2

def df(x):
    return 2*x

# Gradient Descent Algorithm
x = 10  # Starting point
learning_rate = 0.1
iterations = 100

for i in range(iterations):
    x = x - learning_rate * df(x)

print("Minimum found at x =", x)

🔹 Day 7: Hands-on Data Preprocessing

Concepts:

  • Implementing data cleaning, feature scaling, and encoding in a dataset.

Code: Data Preprocessing Pipeline

from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline

# Sample dataset
data = {
    'Age': [25, np.nan, 30, 35, 40],
    'Salary': [50000, 60000, np.nan, 80000, 90000],
    'City': ['New York', 'Paris', 'Berlin', 'London', 'Tokyo']
}

df = pd.DataFrame(data)

# Pipeline for numeric columns
num_pipeline = Pipeline([
    ('imputer', SimpleImputer(strategy="mean")),
    ('scaler', StandardScaler())
])

# Apply transformations
df[['Age', 'Salary']] = num_pipeline.fit_transform(df[['Age', 'Salary']])

# Encode categorical variable
encoder = OneHotEncoder()
encoded_cities = encoder.fit_transform(df[['City']]).toarray()
df = df.drop('City', axis=1)
df = pd.concat([df, pd.DataFrame(encoded_cities)], axis=1)

print(df)

Week 2: Supervised Learning Basics

In Week 2, we will cover:

Linear Regression (Day 8-10)

Logistic Regression (Day 11)

Decision Trees & Random Forest (Day 12)

Support Vector Machines (SVM) (Day 13)

K-Nearest Neighbors (KNN) (Day 14)

End-to-End Supervised Learning Project (Day 15)

📌 Phase 1 (Week 2): Supervised Learning Basics with Concepts & Code

🔹 Day 8: Introduction to Supervised Learning

Concepts:

  • What is Supervised Learning?

    • Uses labeled data (X → Y).

    • Examples: Spam detection, disease prediction.

  • Types of Supervised Learning Models:

    • Regression (Predicts continuous values, e.g., house prices).

    • Classification (Predicts categories, e.g., spam or not spam).

  • Model Evaluation Metrics:

    • Regression: MSE, RMSE, R² Score.

    • Classification: Accuracy, Precision, Recall, F1-score.

Code: Train-Test Split

from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
import pandas as pd

# Load dataset
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)

# Split data into training & testing
X_train, X_test, y_train, y_test = train_test_split(df, iris.target, test_size=0.2, random_state=42)

print(f"Train size: {X_train.shape}, Test size: {X_test.shape}")

🔹 Day 9: Linear Regression

Concepts:

  • Linear Regression Formula: y=mx+by = mx + b

  • Cost Function (Mean Squared Error - MSE): MSE=1n∑(yi−y^i)2MSE = \frac{1}{n} \sum (y_i - \hat{y}_i)^2

  • Gradient Descent to minimize MSE.

Code: Implementing Linear Regression

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

# Sample Data
X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)
y = np.array([2, 4, 5, 4, 5])

# Train Model
model = LinearRegression()
model.fit(X, y)

# Predictions
y_pred = model.predict(X)

# Plot Results
plt.scatter(X, y, color='blue', label="Actual")
plt.plot(X, y_pred, color='red', label="Predicted")
plt.legend()
plt.show()

🔹 Day 10: Multiple Linear Regression & Feature Engineering

Concepts:

  • Handling multiple variables: y=b+m1x1+m2x2+⋯+mnxny = b + m_1x_1 + m_2x_2 + \dots + m_nx_n

  • Feature Engineering:

    • Removing irrelevant features.

    • Polynomial Regression for non-linearity.

Code: Implementing Multiple Linear Regression

from sklearn.datasets import fetch_california_housing

# Load dataset
data = fetch_california_housing()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = data.target

# Train-Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train Model
model = LinearRegression()
model.fit(X_train, y_train)

# Model Evaluation
print("R² Score:", model.score(X_test, y_test))

🔹 Day 11: Logistic Regression

Concepts:

  • Used for classification problems (Yes/No, Spam/Not Spam).

  • Sigmoid Function: f(x)=11+e−zf(x) = \frac{1}{1 + e^{-z}}

  • Cost Function: J(θ)=−1m∑[yilog⁡(h(xi))+(1−yi)log⁡(1−h(xi))]J(\theta) = - \frac{1}{m} \sum [y_i \log(h(x_i)) + (1 - y_i) \log(1 - h(x_i))]

Code: Logistic Regression with Scikit-Learn

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# Load dataset
X = iris.data[:, :2]  # Take first two features
y = iris.target

# Train Model
model = LogisticRegression()
model.fit(X_train, y_train)

# Predictions
y_pred = model.predict(X_test)

# Model Evaluation
print("Accuracy:", accuracy_score(y_test, y_pred))

🔹 Day 12: Decision Trees & Random Forest

Concepts:

  • Decision Tree:

    • Uses Gini Impurity or Entropy to split nodes.

    • Prone to overfitting.

  • Random Forest:

    • An ensemble of decision trees.

    • Reduces overfitting using bootstrapping.

Code: Decision Tree & Random Forest

from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

# Decision Tree
dt = DecisionTreeClassifier()
dt.fit(X_train, y_train)
print("Decision Tree Accuracy:", dt.score(X_test, y_test))

# Random Forest
rf = RandomForestClassifier(n_estimators=100)
rf.fit(X_train, y_train)
print("Random Forest Accuracy:", rf.score(X_test, y_test))

🔹 Day 13: Support Vector Machines (SVM)

Concepts:

  • SVM separates data using the best hyperplane.

  • Kernel Trick: Converts non-linear data into linear using transformations.

Code: Implementing SVM

from sklearn.svm import SVC

# Train SVM Model
svm = SVC(kernel='linear')
svm.fit(X_train, y_train)

# Model Evaluation
print("SVM Accuracy:", svm.score(X_test, y_test))

🔹 Day 14: K-Nearest Neighbors (KNN)

Concepts:

  • KNN checks ‘k’ nearest neighbors to classify a point.

  • Distance Metrics:

    • Euclidean Distance: d=(x2−x1)2+(y2−y1)2d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

  • Choosing the best K using cross-validation.

Code: Implementing KNN

from sklearn.neighbors import KNeighborsClassifier

# Train KNN Model
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)

# Model Evaluation
print("KNN Accuracy:", knn.score(X_test, y_test))

🔹 Day 15: End-to-End Supervised Learning Project

Steps:

  1. Choose a Dataset:

    • Use Kaggle or UCI Machine Learning Repository.

  2. Perform Data Preprocessing:

    • Handle missing values, feature scaling.

  3. Train Different Models:

    • Compare Linear Regression, Decision Tree, and Random Forest.

  4. Model Evaluation:

    • Use metrics like RMSE, Accuracy, Confusion Matrix.

  5. Hyperparameter Tuning:

    • Use GridSearchCV to optimize parameters.

🚀 What's Next?

This concludes Phase 1: Foundations of Machine Learning.🔥 Phase 2 (Days 16-45) will cover:

✅ Unsupervised Learning (Clustering, PCA)

✅ Deep Learning (Neural Networks, CNNs)

✅ Natural Language Processing (NLP)


I'll now break down Phase 2: Unsupervised Learning & Deep Learning (Days 16-45) with concepts, math, and code to help you implement them effectively. 🚀

📌 Phase 2: Unsupervised Learning & Deep Learning (Day 16 - Day 45)

Week 3: Unsupervised Learning (Days 16-22)

🔹 Day 16: Introduction to Unsupervised Learning

Concepts:

  • What is Unsupervised Learning?

    • Works with unlabeled data (X only, no Y).

    • Used for clustering, dimensionality reduction, anomaly detection.

  • Types of Unsupervised Learning Models:

    • Clustering: K-Means, Hierarchical Clustering, DBSCAN.

    • Dimensionality Reduction: PCA, t-SNE, Autoencoders.

🔹 Day 17-18: K-Means Clustering

Concepts:

  • Used to cluster data into K groups.

  • Algorithm Steps:

    1. Choose K centroids randomly.

    2. Assign data points to the nearest centroid.

    3. Compute new centroids.

    4. Repeat until convergence.

  • Evaluation using Inertia (Elbow Method).

Code: Implementing K-Means

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

# Generate sample data
X, _ = make_blobs(n_samples=300, centers=4, random_state=42)

# Apply K-Means
kmeans = KMeans(n_clusters=4, random_state=42)
y_kmeans = kmeans.fit_predict(X)

# Plot clusters
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red', marker='x')
plt.show()

🔹 Day 19: Hierarchical Clustering

Concepts:

  • Builds a hierarchy of clusters.

  • Agglomerative (Bottom-Up) Approach:

    • Each point starts as its own cluster and merges step by step.

  • Dendrograms: Used to determine optimal clusters.

Code: Hierarchical Clustering

from scipy.cluster.hierarchy import dendrogram, linkage
from sklearn.datasets import make_blobs

X, _ = make_blobs(n_samples=100, centers=3, random_state=42)
Z = linkage(X, method='ward')

plt.figure(figsize=(10, 5))
dendrogram(Z)
plt.show()

🔹 Day 20: DBSCAN Clustering

Concepts:

  • Density-based clustering.

  • Good for noisy and non-spherical data.

Code: Implementing DBSCAN

from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps=0.5, min_samples=5)
y_dbscan = dbscan.fit_predict(X)

plt.scatter(X[:, 0], X[:, 1], c=y_dbscan, cmap='rainbow')
plt.show()

🔹 Day 21-22: Principal Component Analysis (PCA) for Dimensionality Reduction

Concepts:

  • PCA reduces dataset dimensions while preserving variance.

  • Eigenvalues and Eigenvectors used to compute principal components.

  • Used in high-dimensional datasets (e.g., Image Processing, NLP).

Code: Implementing PCA

from sklearn.decomposition import PCA
from sklearn.datasets import load_digits

digits = load_digits()
X = digits.data

# Apply PCA to reduce dimensions to 2
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

plt.scatter(X_pca[:, 0], X_pca[:, 1], c=digits.target, cmap='rainbow', alpha=0.7)
plt.show()

Week 4: Introduction to Neural Networks (Days 23-30)

🔹 Day 23-24: Basics of Artificial Neural Networks (ANNs)

Concepts:

  • Perceptron Model: Basic building block of deep learning.

  • Activation Functions:

    • ReLU: max⁡(0,x)\max(0, x) (most commonly used).

    • Sigmoid: 11+e−x\frac{1}{1+e^{-x}} (used for binary classification).

    • Softmax: Converts outputs into probabilities (used for multi-class classification).

Code: Basic Perceptron with NumPy

import numpy as np

# Activation function
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# Perceptron Model
def perceptron(x, w, b):
    return sigmoid(np.dot(x, w) + b)

# Example input
x = np.array([0.5, 0.8])
w = np.array([0.3, -0.6])
b = 0.1

output = perceptron(x, w, b)
print("Output:", output)

🔹 Day 25-26: Building a Neural Network with TensorFlow/Keras

Concepts:

  • Feedforward Neural Networks (FNN).

  • Backpropagation: Adjusts weights using Gradient Descent.

Code: Simple Neural Network for Classification

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

# Generate dataset
X, y = make_classification(n_samples=1000, n_features=10, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Build ANN Model
model = Sequential([
    Dense(10, activation='relu', input_shape=(10,)),
    Dense(5, activation='relu'),
    Dense(1, activation='sigmoid')
])

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Train Model
model.fit(X_train, y_train, epochs=20, batch_size=32, validation_data=(X_test, y_test))

Week 5-6: Deep Learning with CNNs & NLP (Days 31-45)

🔹 Day 31-35: Convolutional Neural Networks (CNNs)

Concepts:

  • CNNs are used for image recognition.

  • Convolution Layers extract features.

  • Pooling Layers reduce dimensions.

Code: CNN for Image Classification (MNIST Dataset)

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten

# Build CNN Model
model = Sequential([
    Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=(28,28,1)),
    MaxPooling2D(pool_size=(2,2)),
    Flatten(),
    Dense(128, activation='relu'),
    Dense(10, activation='softmax')
])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# Train on MNIST dataset
from tensorflow.keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train, X_test = X_train / 255.0, X_test / 255.0

model.fit(X_train, y_train, epochs=5, validation_data=(X_test, y_test))

🔹 Day 36-45: Natural Language Processing (NLP)

Concepts:

  • Tokenization, Word Embeddings, LSTMs.

  • Sentiment Analysis & Text Classification.

This concludes Phase 2! 🚀 Next, we move to Phase 3:

Advanced ML (Ensemble Methods, Transformers, and Deployment).


I'll now detail Phase 3: Advanced ML & Model Deployment (Days 46-60) with concepts, math, and code to help you master these topics. 🚀

📌 Phase 3: Advanced ML & Model Deployment (Day 46 - Day 60)

Week 7: Ensemble Learning & Model Optimization (Days 46-52)

🔹 Day 46-47: Ensemble Learning & Boosting

Concepts:

  • What is Ensemble Learning?

    • Combines multiple models to improve accuracy.

    • Reduces variance and bias.

  • Popular Ensemble Methods:

    • Bagging (Bootstrap Aggregating): Random Forest.

    • Boosting: AdaBoost, Gradient Boosting, XGBoost.

    • Stacking: Combines different ML models for better performance.

Code: Random Forest Classifier

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

# Generate dataset
X, y = make_classification(n_samples=1000, n_features=10, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train Random Forest
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# Evaluate Model
accuracy = model.score(X_test, y_test)
print(f"Model Accuracy: {accuracy * 100:.2f}%")

🔹 Day 48-49: Gradient Boosting & XGBoost

Concepts:

  • Boosting improves weak learners sequentially.

  • XGBoost: Optimized version of Gradient Boosting (faster & better).

  • LightGBM & CatBoost: Advanced boosting libraries for speed & performance.

Code: XGBoost Implementation

import xgboost as xgb
from sklearn.metrics import accuracy_score

# Train XGBoost
model = xgb.XGBClassifier(n_estimators=100, learning_rate=0.1, random_state=42)
model.fit(X_train, y_train)

# Predictions
y_pred = model.predict(X_test)

# Evaluate Accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"XGBoost Accuracy: {accuracy * 100:.2f}%")

🔹 Day 50-51: Hyperparameter Tuning (GridSearch & RandomSearch)

Concepts:

  • Grid Search: Tests all possible combinations (computationally expensive).

  • Random Search: Selects random combinations (faster).

  • Bayesian Optimization: More efficient search technique.

Code: GridSearch for Hyperparameter Tuning

from sklearn.model_selection import GridSearchCV

# Define parameter grid
param_grid = {
    'n_estimators': [50, 100, 200],
    'max_depth': [3, 5, 7]
}

# Grid Search
grid_search = GridSearchCV(RandomForestClassifier(), param_grid, cv=3)
grid_search.fit(X_train, y_train)

print("Best Parameters:", grid_search.best_params_)

Week 8: Deep Learning Advancements & Deployment (Days 53-60)

🔹 Day 53-54: Transformers & Attention Mechanisms

Concepts:

  • Why Transformers?

    • Replaces LSTMs in NLP tasks.

    • Uses self-attention mechanism for better performance.

  • BERT, GPT, T5: Pretrained transformer models for text-based tasks.

Code: Using Hugging Face’s BERT for Text Classification

from transformers import pipeline

# Load sentiment analysis model
classifier = pipeline("sentiment-analysis")

# Predict sentiment
print(classifier("I love machine learning!"))

🔹 Day 55-56: AutoML & Neural Architecture Search (NAS)

Concepts:

  • AutoML: Automates ML pipeline (data preprocessing, model selection, hyperparameter tuning).

  • Popular AutoML Tools: Google AutoML, H2O.ai, Auto-Keras.

Code: Using AutoML with TPOT

from tpot import TPOTClassifier

# AutoML pipeline search
tpot = TPOTClassifier(generations=5, population_size=20, verbosity=2)
tpot.fit(X_train, y_train)

# Best Model
print(tpot.fitted_pipeline_)

🔹 Day 57-58: Model Deployment with Flask & FastAPI

Concepts:

  • Deploy ML models as APIs using Flask or FastAPI.

  • Expose models via endpoints for real-world use.

Code: Deploying a Model using FastAPI

from fastapi import FastAPI
import joblib
import numpy as np

app = FastAPI()

# Load trained model
model = joblib.load("model.pkl")

@app.get("/predict/")
def predict(features: str):
    X = np.array([float(i) for i in features.split(",")]).reshape(1, -1)
    prediction = model.predict(X)
    return {"prediction": int(prediction[0])}

🔹 Day 59-60: MLOps & Cloud Deployment

Concepts:

  • What is MLOps?

    • Combines ML & DevOps for continuous deployment.

  • Deploy Models on AWS, GCP, or Azure.

  • Use Docker & Kubernetes for scalable ML deployments.

🚀 Final Steps:

  • Build a Portfolio Project.

  • Write Technical Blogs.

  • Apply for ML Jobs or Freelance Gigs.

This concludes the 60-day roadmap!




 
 
 

Komentarze

Oceniono na 0 z 5 gwiazdek.
Nie ma jeszcze ocen

Oceń
bottom of page